Correlations in the anisotropic Hubbard model

Jakub Imriška1

1Computational physics group of Prof. Matthias Troyer, Institut für theoretische Physik, Eidgenössische Technische Hochschule, Zürich

Passugg, Graubünden, CH, June 10 - 13, 2014
Hubbard model:

- **repulsive interaction** \(U > 0 \)
- **\(t_{ij} \)**: nearest neighbor hopping \(t \) and \(t' \) (\(t' \leq t \)),

\[
\hat{\mathcal{H}} = - \sum_{\langle i,j \rangle, \sigma} t_{ij} \hat{c}_{i\sigma}^\dagger \hat{c}_{j\sigma} + U \sum_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} - \mu \sum_{i,\sigma} \hat{n}_{i\sigma}
\]

- coupled 1D chains (\(t' \leq t \))
- layered square lattice (\(t' \leq t \))
- layered honeycomb lattice (\(t' \leq t \))
Static mean-field concept

Mean-field density n_i:

$$\hat{n}_i = n_i + (\hat{n}_i - n_i)$$

Neglect spatial & temporal fluctuations:

$$(n_i + \hat{\delta}_i)(n_j + \hat{\delta}_j) = n_in_j + n_i\hat{\delta}_j + n_j\hat{\delta}_j + \hat{\delta}_i\hat{\delta}_j$$

$$\mathcal{H}_{MF} = -\sum_{\langle i,j \rangle,\sigma} t_{ij} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i,\sigma} n_{i\sigma} \hat{n}_{i\bar{\sigma}} - \mu \sum_{i,\sigma} \hat{n}_{i\sigma}$$

with condition $\langle \hat{n}_{i\sigma} \rangle = n_{i\sigma}$.

FM example: impurity with parameters $n_{\uparrow}, n_{\downarrow}$.

For classical models exact for $Z \rightarrow \infty$ ($dim \rightarrow \infty$).

Quantum models: variational approach.
Dynamical mean-field approximation/theory:

- Selfconsistent mapping of the problem: lattice \mapsto impurity
- Constructed to be exact in $Z \to \infty$:
 - onsite interactions (Hubbard model)
 - \Rightarrow selfenergy constant in reciprocal space (local in realspace)
- Physically motivated approximation:
 - lattice selfenergy \approx impurity selfenergy
- DMFT selfconsistency condition:

 $$
 \frac{1}{\Omega_{BZ}} \int_{BZ} \, \text{d}k \ G_{\text{lat}}(k) = G_{\text{lat,local}} = G_{\text{imp}}
 $$

- Exact for $t_{ij} = 0$, $U = 0$ and $Z \to \infty$.
Iterative solution scheme:

Monte Carlo solver: G_{imp}

$$G_{imp}^0 = \left[\overline{G}^{-1} + \Sigma \right]^{-1}$$

$$\overline{G} = \int_{BZ} \left[G^0(k)^{-1} - \Sigma \right]^{-1}$$

$$\Sigma = G_{imp}^{-1} - G_{imp}^{-1}$$

Interpretation of the impurity task with $G_{imp}^0(\tau)$:

Impurity problem solved by perturbation theory in interactions, numerically (Monte Carlo) sampling over all contributing orders.

Anderson impurity model
Dynamical Cluster Approximation (DCA)

DCA: cluster extension of the DMFA (exact for infinite cluster)
9-cell cluster on hexagonal lattice
← realspace
reciprocal space →

- Mapping in reciprocal space:

\[
\frac{1}{\Omega_{patch}} \int_{\text{patch}} \, d\tilde{k} \, G_{\text{lat}}(K + \tilde{k}) = G_{\text{imp}}(K) \quad (1)
\]

- Selfconsistency: \(\Sigma^{\text{lat}}(K + \tilde{k}, i\omega_n) \approx \Sigma^{\text{imp}}(K, i\omega_n) \)
- Solution scheme: iterative as for DMFT, for each \(K \)-point
Nearest-neighbor spincorrelations

Spincorrelations $C = -2 \langle \hat{S}_i^z \hat{S}_j^z \rangle$

Coupled 1D chains
at temperature $T = t/2$
at half filling

Upper sheet: in-chain direction
Lower sheet: \perp direction

Layered lattices
at $S/N = 0.8$
at half filling
← layered square
layered honeycomb →

$T \sim t, \ T \gg t' \Rightarrow C \propto (\text{coordination \ # \ of \ hoppings \ } t)^{-1}$

J. Imriška (group of Prof. M. Troyer, ITP, ETH Zürich)
Coupled 1D chains: comparison with experiment

Experiment: cold atoms in optical lattice [Science 340, 1307 (2013)]
Numerics: extrapolated DCA + local density approximation

Main plot: coupled 1D chains, $U/t = 1.4375$, $t/t' = 7.36$

Ref.: PRL 112, 115301 (2014)
Consistent with Mermin–Wagner–Hohenberg theorem in the limit $t / t' \to \infty$; large anisotropy disables long-range order.

Optimal U/t changes with anisotropy.

Highest S_{crit}/N for isotropic cubic lattice.

Critical entropy per particle for half filled coupled 1D chains

![Graph showing critical entropy per particle for half filled coupled 1D chains]
Acknowledgement

Prof. Matthias Troyer’s Computational Physics Group
(ITP, ETH Zürich)

Dr. Lei Wang Dr. Mauro Iazii

Assistant Prof. Emanuel Gull
Computational condensed matter physics group
(Physics department, University of Michigan)

Prof. Tilman Esslinger’s Quantum Optics Group
(Institute for Quantum Electronics, ETH Zürich)

Dr. Daniel Greif Dr. Thomas Uehlinger
Gregor Jotzu

Assistant Prof. Leticia Tarruell
Ultracold quantum gases
ICFO, Castelldefels (Barcelona), Spain